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A B S T R A C T

Forest restoration is a vital nature-based solution for mitigating climate change and land degradation. To ensure 
restoration effectiveness, the costs and benefits of alternative restoration strategies (i.e., active restoration vs. 
natural regeneration) need to be evaluated. Existing studies generally focus on maximum restoration potential, 
neglecting the recovery potential achievable through natural regeneration processes, leading to incomplete 
understanding of the true benefits and doubts about the necessity of active restoration. In this study, we 
introduce a multi-stage framework incorporating both restoration and regeneration potential into prioritized 
planning for ecosystem restoration. We used the vegetated landscape of Hong Kong (covering 728 km2) as our 
study system due to its comprehensive fine-resolution data and unique history of vegetation recovery, making it 
an ideal candidate to demonstrate the importance of this concept and inspire further research. We analyzed 
vegetation recovery status (i.e., recovering, degrading, and stable) over the past decade based on the canopy 
height data derived from multi-temporal airborne LiDAR. We assessed natural regeneration potential and 
maximum restoration potential separately, producing spatially-explicit predictions. Our results show that 44.9% 
of Hong Kong’s vegetated area has showed evidence of recovery, but remaining gains through natural regen-
eration are limited, constituting around 4% of what could be attained through active restoration. We further 
estimated restoration priority by maximizing the restoration gain. When prioritizing 5% of degraded areas, the 
increment in canopy height could be up to 10.9%. Collectively, our findings highlight the importance of inte-
grating both restoration and regeneration potential into restoration planning. The proposed framework can aid 
policymakers and land managers in optimizing forest restoration options and promoting the protection and 
recovery of fragile ecosystems.

1. Introduction

Forest restoration is recognized as an effective solution for mitigating 
climate change, restoring ecosystem services, and protecting biodiver-
sity, offering a wide range of environmental and socio-economic benefits 
(Griscom et al., 2017, 2020; Lewis et al., 2019). Despite considerable 
efforts by countries and international organizations to implement 
large-scale vegetation restoration programs, projects, and plans 

(EC-European Commission, 2019; Feng et al., 2016; Mansourian and 
Berrahmouni, 2021; Messinger and Winterbottom, 2016; Summit, 
2014), the demand for restoration remains substantial, with a pledge to 
restore at least 1 billion hectares of forests by 2050 to help limit global 
warming to within 1.5 ◦C (Masson-Delmotte et al., 2018). In addition to 
sequestering carbon, forest restoration can also contribute to large-scale 
environmental programs, such as China’s Ecological Conservation 
Redline policy, which focuses on biodiversity and ecosystem services 
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and urgently requires effective conservation and restoration actions to 
meet post-2020 protected area targets (Choi et al., 2022). Furthermore, 
the UN declared 2020 to 2030 as a “Decade on Restoration”, thus un-
derstanding how this can be realized most effectively is critical. While 
acknowledging the importance of forest restoration, it is also essential to 
understand the ecological limits of forest restoration potential and the 
socio-economic constraints of different restoration strategies, deter-
mining when and where human intervention is necessary for active 
restoration or natural regeneration (Torrubia et al., 2014).

In recent years, vegetation recovery potential (VRP) has been uti-
lized as an indicator of the peak state of vegetation growth supported by 
a given biophysical capacity. This concept was initially used to describe 
the magnitude and distribution of climate mitigation opportunities 
available through forest restoration on a global scale (Bastin et al., 2019; 
Walker et al., 2022) and was later adapted to national and regional 
scales to provide clear restoration goals (Jiang et al., 2022; Meng et al., 
2023). Typically, VRP assessment involves coupling data-driven and 
machine-learning techniques, using undisturbed vegetation to represent 
the natural carrying capacity of a location. Key metrics (e.g., tree cover 
or aboveground biomass) of various undisturbed vegetation across large 
environmental gradients and spatial extents are then assembled and 
related to geographical and environmental information to help charac-
terize the restoration potential for any given environment worldwide 
(Bastin et al., 2019; Meng et al., 2023; Walker et al., 2022). Although 
these findings facilitate the identification of broad trends, patterns and 
restoration hotspots, they focus solely on maximum restoration poten-
tial without adequately considering the extent to which natural regen-
eration can contribute to the recovery process in a spatially explicit way. 
This oversight can result in an incomplete understanding of true bene-
fits, costs, and necessity of conducting active restoration in the 
real-world restoration planning (Chazdon et al., 2021; Crouzeilles et al., 
2020).

Compared to active restoration such as planting and seeding, natural 
regeneration offers a cost-effective approach which can potentially play 
a major role in large-scale landscape restoration (Chazdon and Uriarte, 
2016). Initiated through the colonization of opportunistic and locally 
adapted species, natural regeneration has the opportunity to result in a 
higher diversity of native, locally adapted plant species than active tree 
planting schemes through a stochastic dynamic process (Cook-Patton 
et al., 2020; Crouzeilles et al., 2017). Unfavorable conditions, however, 
can impede natural regeneration and push the ecosystem towards an 
alternate steady state where the diversity, structure, composition or 
function cannot be fully restored to levels comparable with nearby 
primary forests. Such impediments can be attributed to local extinctions, 
severe depletion of local species pools, excessively constrained dispersal 
capacity due to extirpation of dispersal agents, and arrested succession 
due to frequent disturbances or environmental barriers such as soil 
erosion, pathogens, or invasive alien species. This regeneration process 
can be assisted with human intervention to overcome these limitations, 
or requiring active restoration under severe conditions using site prep-
aration, tree planting or establishing native tree corridors to facilitate 
their regrowth through subsequent natural regeneration (Chazdon et al., 
2020). In this case, active restoration can act as a complementary 
measure to accelerate or promote natural regeneration to attain the 
maximum recovery potential, thereby achieving greater ecological 
benefits within a given timeframe. As a result, the ecological trajectories 
achievable by natural regeneration and active restoration can be 
different. Such disparities in recovery status, rates and potential out-
comes exhibit spatial variability across diverse landscapes (Fig. 1), 
which are rarely evaluated. Consequently, a better understanding and 
assessment on the status and potential of natural regeneration can 
provide a basis for more cost-effective restoration planning and land-
scape management projects that aim to achieve a wide range of 
lang-lasting social and environmental benefits (Chazdon et al., 2021).

In summary, there are three major knowledge gaps in the field which 
we aim to address: 1) studies focusing on VRPs are primarily conducted 

at coarse spatial resolutions, leading to mismatches with real-world 
ecosystem restoration practices, particularly in fine-scale planning sce-
narios; 2) natural regeneration, as a cost-effective means of ecosystem 
recovery, has not received sufficient attention in most current restora-
tion projects, resulting in inadequate consideration or evaluation of VRP 
achievable through natural regeneration; and 3) the gaps between nat-
ural regeneration potential and maximum restoration potential, as well 
as their spatial variabilities and trajectories, require better character-
ization to assess the extent to which natural regeneration approaches 
can support effective restoration planning.

To address these knowledge gaps, we explore a multi-stage frame-
work, which integrates both maximum restoration and natural regen-
eration potentials into practical ecosystem restoration planning. This is 
followed by a case study conducted in Hong Kong to demonstrate its 
local implementation. We selected Hong Kong as our study system due 
to the comprehensive data availability and unique history of vegetation 
recovery, making it an ideal candidate to demonstrate the significance of 
this concept. Our study helps reveal the key underlying biophysical 
factors that influence the recovery potentials, and the proposed frame-
work hold the promise of assisting policymakers and landscape man-
agers in optimizing vegetation restoration strategies at flexible scales, 
ultimately promoting the protection and recovery of degraded 
ecosystems.

2. Materials and methods

2.1. Overview of the framework

We developed a general framework aiming to quantitatively assess 
vegetation recovery potentials (VRPs) for efficient restoration planning 
using multi-temporal remote sensing data in a spatially explicit manner. 
Notably, VRPs achieved through the two pathways (natural regenera-
tion with or without active intervention) would be distinguished: VRP 
(natural), i.e., natural regeneration potential, represents the achievable 
outcome by natural vegetation regeneration without active intervention 
(Crouzeilles et al., 2020); VRP(max), i.e., maximum restoration poten-
tial, signifies the upper limit that an ecosystem can reach in the future 
with the growth over an infinite timeline, representing the attainable 
outcome under local biophysical capacity (Bastin et al., 2019; Zuo et al., 
2023). The two types of VRPs would be estimated separately with geo-
spatial details, and the differences between the two VRPs serves as a 

Fig. 1. Conceptual illustration showing an example of recovery trajectory after 
disturbance within a timeframe where active restoration acts as a comple-
mentary measure to accelerate or promote natural regeneration to attain the 
maximum vegetation restoration potential. The grids on the topographic map 
represent distinct landscape units, each exhibiting spatial variability in recov-
ery status, rates and potentials, resulting in unique trajectories across land-
scapes. Figure adapted from Moreno-Mateos et al. (2017).
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crucial factor in determining practical restoration priorities and strate-
gies (Fig. 1).

2.2. Study area

Hong Kong Special Administrative Region of China (22◦27′35″N, 
114◦06′13″E) is situated in a sub-tropical monsoon climate, with a mean 
annual temperature of 23.5 ◦C and mean annual precipitation of 2431 
mm (Hong Kong Observatory, https://www.hko.gov.hk/). The land area 
spans 1108 km2, with 40% of the land designated as Country Parks or 
nature reserves.

Hong Kong exhibits a unique history of vegetation recovery with 
intensive influence of human activities, making it an ideal case study on 
understanding dimensions of regeneration and restoration. The region’s 
forests had almost entirely been cleared by the late 17th century, with 
extensive attempts in reforestation and the subsequent establishment of 
the Country Park system after World War II (Zhuang and Gorlett, 1997). 
However, this process has frequently been disturbed by human-induced 
hill fires and other natural hazards, resulting in a strong disturbance 
gradient comprising a mosaic of grassland, shrubland, evergreen sec-
ondary forests, and old-growth fung shui woodland that have been pro-
tected from deforestation for centuries, with artificially reinforced 
ecological boundaries between them. Consequently, variation in re-
covery status, rates, and potentials across these landscapes enable us to 
better understand the underlying biophysical factors shaping landscape 
disparities. Second, Hong Kong offers a wealth of high-resolution data 
that is critical for informing practical restoration planning. This data is 
particularly useful in making accurate assessments of real-world forest 
recovery status and providing detailed, spatially explicit information. 
Over the years, the Hong Kong government has collected multi-temporal 
airborne LiDAR data for the entire city, providing invaluable forest 
structure information. Additionally, annual aerial photographs of the 
city have been collected since the 1960s, allowing for the identification 
of vegetation type history across the city. Furthermore, fine-scale grid-
ded environmental datasets are available in Hong Kong for use in this 
study, including data on climate, topography and soil (Luo et al., 2007; 
Morgan and Guénard, 2018, 2019).

2.3. Materials

We utilized multi-source remote sensing data in this study, including 
airborne LiDAR data, historical aerial photographs, and 30-m resolution 
climate, topography and soil datasets.

(1) Airborne LiDAR data

The airborne LiDAR data includes vegetation structural data and 
terrain data. The surveys, commissioned by the Geotechnical Engi-
neering Office of the Civil Engineering and Development Department 
(CEDD), covered all territories of Hong Kong and were conducted in 
2010 and 2020, respectively. We pre-processed the raw point cloud by 
denoising, filtering, and normalization using LAStools (Isenburg, 2020). 
Notably, filtering steps classified ground points, and a 5-m resolution 
digital terrain model (DTM) was interpolated using the ordinary kriging 
method (Zhao et al., 2016); the normalization step removed the influ-
ence of terrain elevation on LiDAR point clouds by subtracting the DTM 
value from the original point height at the corresponding location. Based 
on the normalized LiDAR point clouds, a canopy height model (CHM) 
was produced, from which we calculated mean top-of-canopy height 
(TCH), as the mean height of pixels composing the CHM surface.

(2) Environmental data

We used a published high-resolution dataset to describe the envi-
ronmental conditions of the study region. This dataset comprises 30-m 
resolution raster GIS layers for Hong Kong’s terrestrial environments, 

including climate, vegetation, topography, and urban development 
(Morgan and Guénard, 2019). We expanded this archive with soil 
properties at surface layer, including soil cation exchange capacity 
(CEC), soil organic carbon (SOC), Nitrogen (N) and Phosphorus (P) 
contents (Luo et al., 2007). This dataset was input into the predictive 
model as predictors to estimate the maximum VRP constrained by 
environmental conditions. Detailed variables are available in Table A1.

(3) Historical aerial photos

The historical aerial photograph dataset provided historical land-use 
information for Hong Kong. The surveys were conducted by the Lands 
Department on an approximately annual basis between 1964 and mid- 
2016. Due to the extensive efforts required in data downloading, 
mosaicking, georeferencing, and other pre-processing, we only used the 
data covering the entire Hong Kong on appropriately 10-year intervals 
from the mid-1960s, including images from 1964, 1973, 1982, 1990, 
1999 and 2010. The resolution is approximately 0.1 m in greyscale 
(except for 2010 which is in RGB). The aerial photos were georeferenced 
using OpenStreetMap. This dataset enabled us to: 1) identify disturbed 
areas (e.g., landslides) by manually delineating regions affected by 
landslide disturbances; and 2) provide external validation for assessing 
the accuracy of the estimated VRPs.

(4) Disturbance mapping

We included two disturbance layers (fires and landslides). The fire 
maps were generated using a Landsat-based burn-area time series, 
where the burn areas in Hong Kong were mapped across a 35-year 
Landsat multispectral time series (1986–2020) using a LTSfire pipeline 
(Chan et al., 2023). The landslide maps were generated from aerial 
photos by manual delineation (Law et al., accepted). These layers help to 
identify VRP under natural regeneration scenario in the absence of 
disturbances.

2.4. Methods

The four key steps outlined below adheres to the overview of our 
proposed multi-stage framework introduced in Section 2.1, as shown in 
Fig. 2. Firstly, we assessed the present-day vegetation recovery status 
(recovering, degrading or stable) to serve as baseline information. We 
then identified and differentiated VRP(natural) and VRP(max) from 
existing patches for estimating their values. Next, we mapped the two 
types of VPRs for the entire region using spatial interpolation and pre-
dictive modeling, based on geographical proximity (Chazdon, 2013) and 
environmental similarity (Bastin et al., 2019). Finally, we used these 
results to determine prioritized restoration plans based on the estimated 
restoration gain. Detailed procedures are described below.

(1) Characterizing recovery status

In this case study, we used canopy height as a demonstration indi-
cator of VRPs for the following reasons: i) canopy height is an easy-to- 
measure index that can be derived from various LiDAR-based products 
with high accessibility, extensive coverage, and low computational cost; 
ii) unlike spectral-based indices (such as NDVI or tree cover), structural 
indices are less susceptible to the saturation effect, particularly in 
tropical regions with dense tree canopies (Phillips et al., 2008); and iii) 
there is a strong correlation between canopy height and aboveground 
biomass, as well as species composition and other ecological functions 
(Cazzolla Gatti et al., 2017; Gamfeldt et al., 2013), suggesting that 
canopy height serves as a starting metric to demonstrate and evaluate 
this theoretical framework. It should be noted that, one single indicator 
would have limitations for a holistic assessment on ecological recovery, 
e.g., canopy height may not adequately reflect the growth of understory 
and tree recruitment. Therefore, we suggest including more Essential 
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Biodiversity Variables (EBVs; Pereira et al., 2013) in follow-up studies.
We used the canopy height models (CHM) derived from airborne 

LiDAR data to characterize vegetation recovery status over the past 
decade in the Hong Kong region. Specifically, we excluded non- 
vegetated regions by using a land utilization mask developed by the 

Planning Department of Hong Kong (https://www.pland.gov.hk/pla 
nd_en/info_serv/open_data/landu/). The CHM data from 2010 to 2020 
were compared to detect height changes in vegetation, with the differ-
ence in CHM between the two time periods calculated pixel by pixel to 
produce a change map over the decade. Based on the height change, we 

Fig. 2. Methodology flow chart showing the framework of using remote sensing and integrated date-driven approaches to characterize vegetation recovery status 
and estimate VRPs.

Fig. 3. Vegetation recovery status in Hong Kong from 2010 to 2020. (a) Canopy height maps for 2010 and 2020. (b) Distribution of canopy height extent from 2010 
to 2020. Note: the color scheme distinguishes histograms of the two separate years, with blue representing the year 2010, orange representing the year 2020, and 
pink representing the overlap. (c) Recovery status map featuring example hotspots of “Recovering”-dominated area and “Degrading”-dominated area using 15% of 
CHmax (maximum value of the canopy height in 2010 and 2020) as the threshold.
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characterized the vegetation recovery status into (1) recovering, (2) 
degrading, (3) stable. In doing so, we adopted a threshold approach to 
characterize the relative canopy height change between 2010 and 2020. 
We tested a range of thresholds based on the percentage of the baseline 
height (maximum canopy height during each grid’s period) using a 
sensitivity test (Fig. A1). To prevent the characterization of short 
vegetation areas from being overly sensitive due to a low threshold, we 
limited an absolute threshold of 0.5 m, which aligns with the maximum 
height typically observed in most grassland species (van Iersel et al., 
2018). Meanwhile, by cross-comparing the sample plots with known 
vegetation recovery status (e.g., recent disturbance sites, old intact 
fengshui wood, and historical restoration sites) through visual evalua-
tion, we chose a 15% change as the threshold value as it could best 
separate all different recovery statuses in our data records (as shown in 
Fig. 3c). Following this threshold, if the absolute change in vegetation 
height exceeded this threshold, the vegetation was considered as 
recovering or degrading in this area; otherwise, the area was deemed 
stable.

(2) Identifying proxy patches for estimating VRPs

We identified areas that have reached their VRPs to serve as proxy 
patches for estimating and mapping VRPs across boarder areas.

The proxy patches for VRP(natural) were determined using stable 
regions identified in the previous step. We recognize that stable canopy 
heights may result from vegetative growth being balanced out by dis-
turbances rather than sites reaching their VRPs, so we excluded areas 
that experienced fires and landslides since 2010. The remaining regions 
identified as “intact stable” were considered to be representative of areas 
that have achieved their natural regeneration potential.

The proxy patches for VRP(max) were determined using a sliding- 
window approach, which selects the maximum vegetation height ach-
ieved within a geographically proximate area. For a given location (i,j) 
in the canopy height raster, the maximum canopy height (CHmax) within 
a sliding window of size w is: 

CHmax w(i, j)=max{CH(x, y)|x, y∈w(i, j)} (1) 

Where CH(x,y) is the canopy height at location (x,y) and w(i,j) is the 
moving window centered at location (i,j) with a window size w.

Then, the standard deviation (SD) between the maximum heights at 
location (i,j) when using different window sizes is: 

SD(i, j)= StdDev{CHw1(i, j),CHw2(i, j),…,CHwn(i, j)} (2) 

Where CHw1(i,j), CHw2(i,j), …, CHwn(i,j) are the maximum heights at 
location (i,j) calculated using different window sizes w1, w2, …, wn, and 
StdDev is the standard deviation function.

Areas with low SD exhibit a higher likelihood of attaining the 
maximum canopy height within their specific environmental conditions. 
The underlying assumption is that if the variation in maximum vege-
tation height across varying sizes of sliding windows is low, the VRP 
(max) at that location, constrained by ambient environmental factors, is 
more likely to fall within that range. The determination of SD threshold 
considers the trade-off between available sample amounts and confi-
dence level (i.e., how possible the samples can accurately reflect the 
characteristics of maximum canopy height). In this context, we opted for 
the first quartile of the sorted SD, selecting the grids as sample points 
where the SD is below this threshold (Fig. A2). While some subjectivity 
may be present, this choice ensures a balance between sample size, 
distribution and confidence level, as shown in Fig. A2. The setting of the 
sliding window size w considered two aspects: 1) For the convenience of 
data processing, it is set as integer multiple of the resolution of main 
remote sensing products (30 m); 2) Considering the seed dispersal dis-
tance for woodland species (Heydel et al., 2014), we used 1 km as the 
maximum w, and included the following sizes: 30, 60, 120, 240, 480, 
and 960 m.

(3) Mapping VRPs

Spatially continuous VRP maps were subsequently generated based 
on the proxy patches.

For VRP(natural), since natural regeneration is driven by the colo-
nization of local species, we estimated it based on geographical prox-
imity, employing kriging interpolation that leverages the spatial 
autocorrelation inherent in the known data (i.e., “intact stable” patches) 
to estimate values at unmeasured locations (Cressie, 1990). Meanwhile, 
we also estimated the spatially-explicit uncertainty for the interpolation.

For VRP(max), we assume that environmental conditions constrain 
the maximum restoration potential. Therefore, we employed a Random 
Forest model to relate the grid-level VRP(max) determined above to 
wall-to-wall environmental variables (Table A1). A subset of 50,000 
observations was randomly selected from the proxy patches containing 
the predictor variables, and collinear variables were removed using a 
correlation threshold of 0.7 (Dormann et al., 2013). We used 70% of the 
observations for training the model and the remaining 30% for valida-
tion. The generalized predictive model takes the form of: 

VRP(max)= f(V1,V2, ⋅ ⋅ ⋅ Vn) (3) 

Where VRP is a function of predictor variable classes, and V1, V2, …Vn 
represent the environmental variables.

The model was assessed using root mean square error (RMSE) and 
coefficient of determination (R2). To identify variable importance and 
understand their impacts, we employed the “importance” function from 
the randomForest package in R, which computed the relative signifi-
cance of predictor variables in a random forest model. Additionally, we 
used partial dependence plots for the important variables to gain in-
sights into how they influence the response variable (Greenwell, 2017).

After generating the VRP maps, we used historical aerial photo-
graphs to verify our results. From these photographs, we created a 
dataset containing 8575 polygons by visually interpreting their land 
cover types (i.e., forest, shrubland, and grassland). This data mapped out 
the historical presence of forest cover, which provided additional veri-
fication for the predicted VRPs. We assume the presence of forest in the 
past decades corresponds to a potential canopy height of 5 m or above, 
following previous studies defining tropical trees/forests (Potapov et al., 
2022). Accordingly, we calculated the percent agreement of the 
matching grid numbers between our VRP predictions (≥5 m) and his-
torical forest cover (recorded at least once). This consistency serves as an 
independent verification on the accuracy of our VRP estimates.

(4) Assigning restoration priority

To integrate both restoration and regeneration potentials into prac-
tical restoration planning, we proposed a simplified criterion for 
assigning restoration priority. Specifically, we define the restoration 
gain as the gap between VRP(max) and VRP(natural). By identifying the 
top percentiles of this gap, we can locate the areas that urgently need 
vegetation restoration and are most effective for such restoration efforts. 
For demonstration, we highlighted the areas with top 5%, 10% and 20% 
of the restoration gain.

3. Results

3.1. Recovery of Hong Kong vegetation over the past decade

The comparison of canopy height models between 2010 and 2020 
reveals a general trend of vegetation recovery in Hong Kong over the 
past decade (Fig. 3a). This is particularly evident in two ways: 1) the 
area occupied by vegetation below 1 m height has noticeably decreased 
(ca. 42 km2); and 2) vegetation above 1 m height has increased across all 
height categories (Fig. 3b). This demonstrates substantial vegetation 
recovery in the area. The spatial distribution of the recovery status can 
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be found in Fig. 3c. The maps show that higher canopy heights are not 
evenly distributed but are more concentrated towards the center of the 
forested areas, which could be due to edge effects where the forest edges 
(typically lower canopy heights) are more susceptible to environmental 
changes and human-induced disturbance. Our sensitivity analysis 
demonstrates that the proportion of recovering/degrading areas remains 
relatively stable (4.2–4.5 times) within a range of threshold value (i.e., 
5%–30%; Fig. A1), indicating that our generated vegetation recovery 
status is reasonably accurate. Due to its relative insensitivity, we used a 
threshold of 15% of the baseline height for illustration. Among all three 
recovery statuses, the recovering area amounts to 326.6 km2, consti-
tuting 44.9% of Hong Kong’s total vegetation area, the stable area en-
compasses 328.5 km2, while the degrading area occupies 72.8 km2. 
Collectively, our results demonstrate that a large proportion of Hong 
Kong’s vegetation is recovering over the past decade.

3.2. Spatial patterns of VRP(natural)

Disturbed areas between 2010 and 2020 were predominantly 
distributed in the northwest mountainous region of Hong Kong, 
covering a total of 75.85 km2, which accounts for ca. 6.8% of the total 
land area (Fig. 4a). In contrast to the disturbance pattern, the stable 

grids (=VRP(natural)) were found to be widely distributed across Hong 
Kong, although the canopy height values of these stable grids varied 
considerably across the landscape. Based on the canopy height values of 
these stable grids in Fig. 4a, we further developed a model using kriging 
interpolation to extend the grid level VRP(natural) to the entire Hong 
Kong, and the model results indicate strong spatial autocorrelation with 
a RMSE of 0.85 (Fig. 4b). The semivariogram result showed a rising 
curve that eventually levels off, indicating that points closer to each 
other (with shorter lag distances) have more similar values of VRP 
(natural) than points further apart. The estimated range is 2.4 km, 
beyond which the VRP(natural) is no longer spatially autocorrelated. 
The associated model-predicted map of VRP(natural) is presented in 
Fig. 4c, wherein the central mountainous region exhibits higher poten-
tial, while the eastern and western coastal areas show lower potential. 
The southwest region exhibits higher variability in VRP(natural).

3.3. Spatial patterns of VRP(max)

Next, we integrated the derived grid-level VRP(max) (see Methods) 
with environmental variables and the RF model to estimate and map 
VRP(max) across the entire Hong Kong. Our results demonstrate high 
predictive capabilities for VRP(max), with R2 of 0.67 and RMSE of 2.83 

Fig. 4. (a) Distribution of disturbance (fire and landslide) events between 2010 and 2020. The background layer shows the vegetation characterized as “stable” 
status. (b) Semivariogram showing the spatial autocorrelation in vegetation regeneration. Both the red dots and the blue crosses show the result of binning empirical 
semivariances, where the binning is done in different ways: the red dots are binned from square cells, and the blue crosses are binned from angular sectors. Details 
can be found in Gribov et al. (2006). (c) Map of VRP(natural).
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m (Fig. 5a). The RF model also attributed relative variable importance, 
among which the precipitation of warmest quarter (biovars_t18) was 
identified as the most important variable. Meanwhile, the RF model 
identified the other three most important variables, i.e., the distance to 
coast, annual mean relative humidity, and precipitation seasonality 
(biovars_t15), which together with precipitation of warmest quarter 
(biovars_t18), accumulatively explained more than 50% of the variation 
of VRP(max). Since all these variables are directly or indirectly related 
with plant-available water, this result further indicates that plant water 
availability is an essential process in determining the natural carrying 
capacity, thus significantly affecting VRP(max). The corresponding 
model-predicted map of VRP(max) is presented in Fig. 5c, which again 
shows a similar pattern as VRP(natural) but with much higher canopy 
height values compared with VRP(natural).

To further understand the variables’ effect on regulating VRP(max), 
we used partial dependence plots that showcase the average effect of 
precipitation and the distance to coast on VRP(max) (Fig. A3). The result 
shows that the VRP(max) is sensitive to precipitation within the range 
between 800 and 1200 mm yr− 1; however, it no longer restricts VRP 
(max) if precipitation exceeds 1200 mm yr− 1 (Fig. A3). In addition, 
proximity to the coast also constrains VRP(max). Finally, the estimated 

maps of VRPs, including both VRP(natural) and VRP(max), were veri-
fied using historical aerial photo (Fig. A5) with satisfying consistency, i. 
e., 76% for VRP(natural) and 91% for VRP(max).

3.4. Restoration priority based on current and VRP maps

The maps of current canopy heights, VRP(natural), and VRP(max) in 
the Hong Kong region are presented in Fig. A4, and the gaps (i.e., 
potential-current) for both VRP(natural) and VRP(max) are displayed as 
histograms in Fig. 6. The results indicate that the current vegetation 
height closely approximates the estimated VRP(natural), thereby 
limiting the space for spontaneous natural recovery, constituting around 
4% of what could be attained through active restoration, where notable 
disparity exists between the current vegetation height and VRP(max). 
This suggests the need for prioritizing active restoration strategies to 
achieve more substantial rehabilitation results in the future.

To determine the restoration priority, we analyzed the relationship 
between the gaps of VRP(natural) and VRP(max) (Fig. 7). According to 
the criteria we have established, restoration priority is assigned to areas 
that exhibit VRP(max) values significantly higher than VRP(natural), i. 
e., with maximized restoration gain. Overall, the area classified with top 

Fig. 5. (a) Observed and predicted VRP(max). (b) Importance of features in the RF regression model. The top three most important variables are: precipitation of 
warmest quarter (biovars_t18), precipitation of coldest quarter (biovars_t19), and distance to coast (waterdist). Full descriptions of the remaining variables can be 
found in Supplement (Table A1). (c) Map of VRP(max).
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5% restoration gain (threshold = 10.23 m) is approximately 3.41 km2, 
accounting for approximately 10.9% of the restoration gain of vegeta-
tion height (Fig. 7).

4. Discussion

4.1. Significance of the framework

We devised a multi-stage framework characterizing vegetation re-
covery status and assessing recovery potentials, allowing for restoration 
prioritization at a fine spatial scale. Specifically, we emphasized the role 
of natural regeneration during the recovery process and incorporated 
both natural regeneration and active restoration into the restoration 
planning framework. While there is an ongoing debate regarding the 
superiority of natural recovery over active restoration (Crouzeilles et al., 
2017; Reid et al., 2018; H. Zhu et al., 2023), natural regeneration holds 
significant values as a viable approach for large-scale recovery due to 
the negligible cost. However, the ability to recover the ecological 

function may vary considerably, especially in areas proximate to or 
isolated from mature forest communities (Chazdon and Guariguata, 
2016). The main innovation of our framework is to provide quantitative 
assessments of the natural regeneration potential and the maximum 
restoration potential, respectively. This offers a more practical approach 
when devising vegetation restoration measures, thereby reducing un-
certainty and enabling a better grasp of, and reliance on, the outcomes of 
natural regeneration. In doing so, policymakers and landscape managers 
can concurrently maximize the overall effectiveness of restoration 
through natural regeneration while minimizing the necessity for active 
interventions and their associated costs.

We used Hong Kong to demonstrate that project-level planning with 
detailed local datasets can distinguish between natural and active re-
covery in terms of driving factors and potential outcomes. Although this 
case study relies heavily on remote sensing data with limited integration 
of field-based information, as input data becomes more diverse and 
comprehensive, the proposed framework can also be progressively 
expanded upon, leading to more efficient and accurate formulation of 
restoration planning. Moreover, this framework demonstrates the po-
tential for scaling up, contributing to ambitious restoration goals at 
national and global scales. Building upon this foundation, this frame-
work can be further adapted to other aspects of ecosystem functions or 
services, such as carbon sequestration and species richness (Chazdon, 
2013; Poorter et al., 2016). With the continued development in the field 
of the geographical biology and the increasing availability of big earth 
data, more and more relevant data will become accessible in the future, 
and this will facilitate broader applications under the restoration plan-
ning concept. Overall, the framework not only facilitates efficient 
restoration planning but also provides essential baseline data for more 
accurate predictions of future climate change scenarios using biosphere 
models.

4.2. Implication of the case study

The case study demonstrates a simple, flexible, and transparent 
framework to integrate vegetation recovery potentials into restoration 
planning. Regarding the methodology, we employed two different ap-
proaches, geographical proximity and environmental similarity, to 
separately estimate the natural and maximum vegetation recovery po-
tentials. This differentiation takes into account the distinct mechanisms 
underlying the two forms of recovery potential. For VRP(natural), nat-
ural regeneration is regarded as being driven by the colonization of 
opportunistic and locally adapted species, where local availabilities of 

Fig. 6. Histogram showing the gaps between current vegetation height, VRP 
(natural) and VRP(max) height. The red dash line indicates the threshold for 
top 5% percentile of restoration gain by area.

Fig. 7. Restoration priority map with example hotspots. The highlighted areas are with top 5%, 10% and 20% of the restoration gain, respectively.
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soil and seeds are highly relevant to this process (Arroyo-Rodríguez 
et al., 2017). Factors such as residual vegetation providing roosting sites 
for seed-dispersers (Zahawi et al., 2013) or shade for late-successional 
species (Ashton et al., 2014) are also associated with the outcomes of 
natural regenerations. Using spatial interpolation approaches, without 
restriction to specific data inputs, the underlying influence of these 
factors can be roughly estimated using spatial autocorrelation. In our 
case, the semivariogram result has shown that points closer to each other 
have more similar values (e.g., VRP(natural) under seed dispersal) than 
points further apart. We determined a range limit of 2.4 km; at distances 
greater than this, there is a noticeable decline in spatial correlation. This 
decline suggests a reduced probability for seedlings to establish them-
selves successfully, originating from a shared seed source. This finding 
aligns with prior studies on the expected range of seed dispersal in 
forests as documented by Heydel et al. (2014). Nonetheless, the specific 
effects of real-world factors are subject to variation across different 
environmental contexts and species, as well as socioeconomics con-
strains. When estimating regeneration potential on a larger scale where 
socioeconomic variables exhibit differentiation, we suggest adopting the 
method used by Crouzeilles et al. (2020). Their model correlates envi-
ronmental, climatic, and socioeconomic variables with the occurrence of 
natural regeneration, which facilitates a holistic prediction on the 
regeneration outcome.

In contrast to VRP(natural), VRP(max) represents the best possible 
outcomes for recovering ecosystem functions, services, and biodiversity 
at scale, which can be attained either by accelerating through active 
intervention or by allowing for a longer period of natural regeneration 
under favorable conditions (Chazdon and Guariguata, 2016). As a 
theoretical assessment, VRP(max) is closely tied to the environmental 
constraints, allowing for estimation through a modelling approach 
based on environmental similarity (e.g., Bastin et al., 2019; Walker 
et al., 2022). This case study confirms the reliability of this approach and 
indicates its robust correlation at a finer scale. For instance, environ-
mental factors explained 67% of the variance in VRP(max) in Hong Kong 
at a 30 m resolution, showing its sensitivity on fine-scale spatial het-
erogeneity. We found that precipitation emerges as a key driver deter-
mining VRP(max). This aligns with previous research highlighting its 
role in supporting ecosystem functioning and resilience (Ratcliffe et al., 
2017). The marginal effect of the factors was shown using a partial 
dependence plot (Fig. A3), and the result indicates there exists a 
threshold (ca. 1100 mm of precipitation) where the VRP(max) increases 
significantly. Also, our results indicate that the mountainous regions 
exhibit a generally higher VRP(max) than the coastal areas. This could 
potentially be attributed to the water availability interacted by the 
rainwater storage capacity and groundwater supply in these respective 
areas. These analyses facilitate a deeper understanding on the drivers of 
the large variability in vegetation restoration potentials.

Finally, the restoration prioritization based on the integration of 
VRPs has successfully identified the hotspots with high restoration gains 
(Fig. 7). Yet, safeguarding these areas from fire remains a paramount 
concern, as these hotspot regions largely overlapped with areas of 
frequent fire occurrences (Chan et al., 2023). Despite the rapid pace of 
natural forest successional development in Hong Kong (Abbas et al., 
2016), this process is significantly impeded by recurrent fires (Chan and 
Coomes, 2024). Moreover, the negative impact of fires on seed banks 
reduces the chance of natural regeneration in adjacent areas (Shi et al., 
2022). Therefore, beyond the establishment of country parks, there may 
be a need for the government to intensify interventions in fire preven-
tion policies and measures. Refinement is also needed to incorporate 
socioecological and political information with further stake-holder 
involvement at the appropriate intervention scale (Wortley et al., 2013).

4.3. Limitations and potential improvements

Our framework provides quantitative assessments on vegetation 
restoration potentials, which are useful for informing planning and 

implementation to foster forest restoration at scale. Based on this case 
study and the implementation using local data, we have identified 
several considerations regarding the insights gained and potential lim-
itations that need to be addressed. Firstly, the estimated VRP(max) may 
vary, as even when the forest reaches sufficient ages, climatic distur-
bances, background climate change, and other factors causing forest 
degradation may render VRP(max) unstable. Secondly, the timeframe of 
this study is limited. We focused on vegetation recovery potentials at the 
decadal scale primarily due to: 1) in response to the increasingly urgent 
Climate Action Plan (e.g., the 2050 carbon neutrality goal in Hong 
Kong), we aim to track the vegetation recovery trajectory on a decadal 
timescale so that the model can be used to inform potential outcomes in 
the near future; 2) we aim to minimize uncertainties arising from longer 
timescales, including anthropogenic disturbances (fires) and natural 
disasters (typhoons); and 3) from a feasibility aspect, it is difficult to 
cover the longer timeframe using the current data, i.e., the two-time 
LiDAR surveys which span a ten-year interval. As a result, when using 
“stable” regions as proxy patches to approximate the VRP(natural), the 
proxy patches may not encompass the ideal VRP(natural) and could 
potentially result in underestimation. This is because the “stable” re-
gions were recognized based on the decade-span LiDAR data, while it is 
possible that these regions are still undergoing slow successional pro-
cesses. In the case of Hong Kong, Abbas et al. observed a faster con-
version from shrub to forest than from grassland to shrub, suggesting 
that there exists a lag, or bottleneck, in grassland invasion by woody 
vegetation (Abbas et al., 2016). In the absence of wildfires, shrubs and 
young trees typically replace grasslands within 10–15 years, and after 
another 15–30 years, they form secondary forests with a height of 10–16 
m. Therefore, employing observations from a longer time series would 
enhance the accuracy of recovery potential estimations by improving 
the representativeness of the proxy patches.

There are also several aspects that deserve further investigation to 
refine this framework. One example is the vegetation recovery rate, 
which determines the time required for an ecosystem to return to an 
ideal state. Given the climate change scenario, the changes in light, 
temperature, rainfall, and atmospheric CO2 concentration could 
generate impacts on plant phenology and physiology, and thus causing 
the change in recovery rate as well as the regeneration/restoration po-
tential. This is especially evident by a few recent studies (e.g., Xu et al., 
2023; Zhu et al., 2016). Additionally, while we have predicted the 
vegetation recovery potentials under ideal scenario, whether the envi-
ronmental capacity can support additional trees still requires further 
mechanistic validation. For instance, whether groundwater resources 
can sustain the growth of a large number of trees (Christina et al., 2017). 
This could potentially be assessed in the future through physical process 
modeling. Furthermore, we may also take into account the climate 
events, such as intensified droughts, rising temperatures, extreme pre-
cipitations and their potential effects on vegetation growth, all of which 
can be integrated into the assessment of ecosystem recovery potentials.

5. Conclusion

In conclusion, this study developed a framework that integrates the 
natural regeneration potential and the maximum restoration potential 
into real-world ecosystem restoration planning at a finer spatial scale. 
This framework enables us to analyze the relationship between current 
vegetation status and vegetation recovery potentials, and accordingly 
we were able to determine different priority levels for restoration efforts. 
This information can assist policymakers in optimizing vegetation 
restoration options and promoting the protection and sustainable 
development of fragile ecosystems. Moving forward, this framework 
shows the potential to expand with multidimensional indicators to 
accommodate diverse research needs, such as carbon sequestration, 
biodiversity, and other ecosystem services. Restoration practices lie 
along a continuum rather than within discrete categories of natural 
versus active forms, and our framework facilitate their integration, 
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leading to a more practical and efficient restoration planning.
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Appendix

Fig. A1. Varying threshold for determining the vegetation recovery status (recovering, degrading and stable) using canopy height information.
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Fig. A2. (a) Standard deviation (SD) distribution of maximum canopy heights under different sliding window sizes. When taking 1st quartile of the sorted SD as 
threshold, the distribution of sample points is shown in the example map. (b) The distribution of the maximum vegetation heights corresponding to the afore-
mentioned sampling points.

Fig. A3. Partial dependence plots showing the relationship between important variables in the random forest model (precipitation of warmest quarter and distance 
to coast) and the predicted outcome (potential canopy height) while holding other variables constant. (a) relationship between precipitation of warmest quarter and 
potential canopy height (b) relationship between precipitation of warmest quarter, distance to coast and potential canopy height.
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Fig. A4. The current canopy height map and VRP maps in Hong Kong region (in red frame), and height gap maps between each pair of categories (in blue frame).
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Fig. A5. Results of external validation using historical aerial photos. (a) Demonstration of external validation where the land classification was made by visual 
interpretation. (b) Summary of results using 5 m as threshold to match with forest land cover.

Table A1 
Description of environmental variables used for predicting maximum restoration potential in the random forest model.

Description Unit 5% 50% 95% Filename

Aspect (Northness) index − 0.99 0 0.99 aspect.tif
Aspect (Degree) ◦ 18 180 341 aspect_degree.tif
Slope ◦ 0 17 33 slope.tif
Terrain Roughness index 0.33 24.95 50.67 rough.tif
Elevation m 5 84 407 elevation.tif
Aspect * Slope index − 23.5 0 23.58 aspect_x_slope.tif
Distance to Coast m 68 1349 6186 waterdist.tif
Relative Elevation (60 m radius) m 0 16 37 relelev60.tif
Relative Elevation (120 m radius) m 0 28 69 relelevl20.tif
Relative Elevation (240 m radius) m 2 46 124 relelev240.tif
Relative Elevation (480 m radius) m 2 64 208 relelev480.tif
Relative Elevation (960 m radius) m 3 76 308 relelev960.tif
Water Proximity (0.75 km radius) proportion 0.52 1 1 water25.tif
Water Proximity (1.5 km radius) proportion 0.4 0.98 1 water50.tif
Water Proximity (3 km radius) proportion 0.33 0.88 1 waterl00.tif
Water Proximity (6 km radius) proportion 0.31 0.74 1 water200.tif
Water Proximity (12 km radius) proportion 0.27 0.66 0.94 water400.tif
Annual Mean Temperature ◦C 20.8 22.9 24 biovars_t_l.tif
Mean Diurnal Range (Mean (max temp-min temp)) ◦C 4.9 6.2 7.7 biovars_t_2.tif
Isothermality (bio2/bio7) (* 100) index 27.4 31.9 35.6 biovars_t_3.tif
Temperature Seasonality (standard deviation * 100) index 467 496 512 biovars_t_4.tif
Average High Temperature of Warmest Month ◦C 28.9 31.5 32.8 biovars_t_5.tif
Average Low Temperature of Coldest Month ◦C 9.5 11.7 13.9 biovars_t_6.tif
Temperature Annual Range (bio5-bio6) ◦C 17.7 19.6 21.6 biovars_t_7.tif
Mean Temperature of Wettest Quarter ◦C 25.8 27.8 29 2 biovars_t_8.tif

(continued on next page)
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Table A1 (continued )

Description Unit 5% 50% 95% Filename

Mean Temperature of Driest Quarter ◦C 14.4 16.3 17.4 biovars_t_9.tif
Mean Temperature of Warmest Quarter ◦C 25.9 28.2 29.2 biovars_t_10.tif
Mean Temperature of Coldest Quarter ◦C 14.4 16.3 17.4 biovars_t_11.tif
Annual Precipitation mm 1738 2079 2415 biovars_t_12.tif
Precipitation of Wettest Month mm 345 425 521 biovars_t_13.tif
Precipitation of Driest Month mm 25 32 35 biovars_t_14.tif
Precipitation Seasonality (Coefficient of Variation) index 78.7 82.8 86 biovars_t_15.tif
Precipitation of Wettest Quarter mm 883 1085 1276 biovars_t_16.tif
Precipitation of Driest Quarter mm 86 104 112 biovars_t_17.tif
Precipitation of Warmest Quarter mm 814 1054 1260 biovars_t_18.tif
Precipitation of Coldest Quarter mm 86 104 112 biovars_t_19.tif
Extreme Temperature Annual Range ◦C 26.3 29 32.1 avars_annual_range.tif
Annual Mean Dew Point ◦C 17.3 18.4 19.1 avars_dewp_mean.tif
Annual Mean Relative Humidity % 75.4 80.4 84.9 avars_humid_mean.tif
Maximum Temperature of Warmest Month ◦C 32.3 35 36.2 avars_max_tmax.tif
Minimum Temperature of Coldest Month ◦C 2.4 5.6 8.6 avars_min_tmin.tif
Annual Mean Air Pressure hPa 1012.5 1012.8 1013.4 avars_press_mean.tif
Actual Annual Mean Temperature ◦C 20.3 22.4 23.6 avars_tmean_mean.tif
Annual Mean Wind Speed km/h 5.4 11.6 19.2 avars_windsp_mean.tif
Urbanicity (sigma = 10) % 0 0 68.9 urbanicity_gauss10.tif
Urbanicity (sigma = 50) % 0 1.5 56 urbanicity_gauss50.tif
Urbanicity (sigma = 100) % 0 3.3 50.1 urbanicity_gauss100.tif
Soil CEC content mmol/kg 30–60 60–100 >140 soil_map3.tif
Soil organic carbon content % 0.51–1 1.01–2 2.01–2.5 soil_map4.tif
Soil total nitrogen content mg/kg 50–100 100–150 >200 soil_map5.tif
Soil total phosphorus content mg/kg 50–100 100–200 >500 soil_map6.tif
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